Spatio-temporal modelling of climate-sensitive disease risk: Towards an early warning system for dengue in Brazil

نویسندگان

  • Rachel Lowe
  • Trevor C. Bailey
  • David B. Stephenson
  • Richard J. Graham
  • Caio A. S. Coelho
  • Marilia Sá Carvalho
  • Christovam Barcellos
چکیده

This paper considers the potential for using seasonal climate forecasts in developing an early warning system for dengue fever epidemics in Brazil. In the first instance, a generalised linear model (GLM) is used to select climate and other covariates which are both readily available and prove significant in prediction of confirmed monthly dengue cases based on data collected across the whole of Brazil for the period January 2001 to December 2008 at the microregion level (typically consisting of one large city and several smaller municipalities). The covariates explored include temperature and precipitation data on a 2:51 2:51 longitude–latitude grid with time lags relevant to dengue transmission, an El Niño Southern Oscillation index and other relevant socio-economic and environmental variables. A negative binomial model formulation is adopted in this model selection to allow for extra-Poisson variation (overdispersion) in the observed dengue counts caused by unknown/unobserved confounding factors and possible correlations in these effects in both time and space. Subsequently, the selected global model is refined in the context of the South East region of Brazil, where dengue predominates, by reverting to a Poisson framework and explicitly modelling the overdispersion through a combination of unstructured and spatio-temporal structured random effects. The resulting spatio-temporal hierarchical model (or GLMM—generalised linear mixed model) is implemented via a Bayesian framework using Markov Chain Monte Carlo (MCMC). Dengue predictions are found to be enhanced both spatially and temporally when using the GLMM and the Bayesian framework allows posterior predictive distributions for dengue cases to be derived, which can be useful for developing a dengue alert system. Using this model, we conclude that seasonal climate forecasts could have potential value in helping to predict dengue incidence months in advance of an epidemic in South East Brazil. & 2010 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The development of an early warning system for climate-sensitive disease risk with a focus on dengue epidemics in Southeast Brazil.

Previous studies demonstrate statistically significant associations between disease and climate variations, highlighting the potential for developing climate-based epidemic early warning systems. However, limitations include failure to allow for non-climatic confounding factors, limited geographical/temporal resolution, or lack of evaluation of predictive validity. Here, we consider such issues...

متن کامل

Dengue outlook for the World Cup in Brazil: an early warning model framework driven by real-time seasonal climate forecasts.

BACKGROUND With more than a million spectators expected to travel among 12 different cities in Brazil during the football World Cup, June 12-July 13, 2014, the risk of the mosquito-transmitted disease dengue fever is a concern. We addressed the potential for a dengue epidemic during the tournament, using a probabilistic forecast of dengue risk for the 553 microregions of Brazil, with risk level...

متن کامل

Assessment of Neonate's Congenital Hypothyroidism Pattern Using Poisson Spatio-temporal Model in Disease Mapping under the Bayesian Paradigm during 2011-18 in Guilan, Iran

Background: Congenital Hypothyroidism (CH) is one of the reasons for mental retardation and defective growth in neonates. It can be treated if it is diagnosed early. The congenital hypothyroidism can be diagnosed using newborn screening in the first days after birth. Disease mapping helps to identify high-risk areas of the disease. This study aimed to evaluate the pattern of CH using the Poisso...

متن کامل

Surveillance of Dengue Fever Virus: A Review of Epidemiological Models and Early Warning Systems

Dengue fever affects over a 100 million people annually hence is one of the world's most important vector-borne diseases. The transmission area of this disease continues to expand due to many direct and indirect factors linked to urban sprawl, increased travel and global warming. Current preventative measures include mosquito control programs, yet due to the complex nature of the disease and th...

متن کامل

Spatio-temporal agent based simulation of COVID-19 disease and investigating the effect of vaccination (case study: Urmia)

Proper management of epidemic diseases such as Covid-19 is very important because of its effects on the economy, culture and society of nations. By applying various control strategies such as closing schools, restricting night traffic and mass vaccination program, the spread of this disease has been somewhat controlled but not completely stopped. The main goal of this research is to provide a f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Geosciences

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2011